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Large Language Models

Can large language models understand meaning?
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Large Language Models

Can large language models understand meaning?

HEE  FAHE S

Symbol grounding problem (Harnad et al., 1990)
« E.g. To learn Chinese with a Chinese/Chinese dictionary



Grounded Language

Two friends traveling through rough country who were suddenly
confronted by a bear. One saved himself by scrambling up a tree
while the other who couldn’t climb asked for help but got nothing.
So he threw himself on the ground and pretended to be dead. The
animal came close and sniffed him over but then left. Then the
man in the tree asked what the bear had been saying to him. His
friend said "he told me never to trust someone who deserts you in
need."

The Bear and the Travelers — Aesop,

painting from Milo Winter 1919
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Grounded Language

The Bear and the Travelers — Aesop,

painting from Milo Winter 1919



Visual Perception

One Look Is Worth
A Thousand Words--

One look at our line of Repubilic, Fire-
stone, Miller 2and United States tires can
tell you more than a hundred personal
letters or advertisements.

WE WILL PROVE THEIR VALUE
BEFORE YOU INVEST ONE DOLLAR
IN THEM.

Ever consider buying Supplies from a
catalog?

What's the use! Call and see what you
are buying. One look at our display of auto-
mobile and motorcycle accessories will con-
vince you of the fact,

THAT WE HAVE EVERYTHING FOR
THE AUTO

Pigia Auto Supply House

133 N. Main St.—Fiqua, O.
R N T R,
wiki


https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words#cite_note-13
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Image Encoder
Sparse feature

« Object detector

Dense feature

« Convolutional neural network (CNN), Vision transformer (ViT) ...



Sparse Features - Object detector

* Faster RCNN

classifier

Region Proposal Network

feature maps

CAT, DOG, DUCK

* Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2015
* Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering, 2018



Dense feature - CNN

* Convolutional neural network
* Resnet50, Resnetl101

* Pre-trained on ImageNet

7x7 conv, 64, /2

paol, /2

3x3 conv, 128, /2

128

3x3 conv, 128

* Deep Residual Learning for Image Recognition, 2015




Practical Applications

Image Captioning
Visual Question Answering

Visual Storytelling



Common VL Tasks- Image Captioning

- Language generation

« Difficult automatic evaluation (BLEU,
CIDEr, Rogue)

............ i
- i A large gray building with

1 0 M failed Image captioning model i a clock tower surrounded |
e i | by some trees. E
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Common VL Tasks- Image Captioning

Input: image
Output: caption

Input

Visual Encoder > Language Model

Output v

Caption:
Straw Hat




Common VL Tasks- Visual Question
Answering

 Elicit specific information from images
« Relatively easier evaluation (accuracy using string matching)

ll .
Image question answerin e i
- & » brown !
model Dt e i

Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering, 2016



Common VL Tasks- Visual Question
Answering

« Input: image and caption
*  Output: answer
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rmh +o | What is  the man selling - jding them

/5 — B a

g

word2vec vect 4

2

@

/5 m—p Q E
ﬂ => VGG 19 = Better representation 1 =
such as Glove 1 [ CZ gv
HoH 5 £
D-p-0-p-n— f @ 8%
t t t = B o
n 9
—»—»3 B A8 B : g
Recurrent Mc & = 8
e.q. LSlM

Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering, 2016



Common VL Tasks- Visual Storytelling

« Creative Language generation

( Visually Grounded Story Generation )

\

Jack was on a call with a client, getting stressed over a business deal that wasn't going well.
Jack put the phone down after an unsuccessful deal and decided to go get a coffee at the nearby coffee.
At the coffee shop, he started talking to the waiter Will about the unfortunate call.

Will told him he would convince the client to accept the deal if he could work for Jack.
Will then called the client and successfully struck the deal....




Basic Network architecture - Pretraining
Multimodal model

Image mm)p  Image encoder \
Multi-modal fusion
Text - Text encoder /



Text Encoder - Embedding

Tokenize

Map the input string to the
index of its tokens

Input: String

Output: x; €{0,1,---,T —1},i €

{0, 1, ,N}

N: number of subtokens
T: vocabulary size

« Embedding

tokenizer.encode

Hello world

Map the input string to the
index of its tokens

Input: x; € {0,1,---, T — 1}

Output: y; € RP,i € {0,1,---, N}
D: embedding dimension
N: number of subtokens

embed

v

[874, 296, 1]

v

RN*D




Text Encoder — Feed-Foward Network

Hidden
layer

Input

Output
layer

Inputs
Outputs



Text Encoder - RNN
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Attention Mechanisms

Motivation

* Retrieval of a value ¥ for a given query g based on a key k
* Applications on image captioning (Xu et al., 2015), machine translation
(Bahdanau et al., 2015) g :

accord

General form:

Attention(q, k v) = Y.sim(q, k;) q
e additive: sim(q, k) = Wg q+wl -k
e dot: sim(q, k) = q7 - k

e self: scaled dot attention when ¢ = k

Benefits

° 0(1) operations to draw global dependencies between two positions
* Easytointerpret



Self-attention Mechanism

Matrix form

* Eachrow in Xis a symbol embeddingin a

sequence

Benefits

e Can compute in parallel B -

:
E

B

* No additional parameters

Normalisation EEEE -

.

* Softmax over a sequence

» Attention(Q,K,V) = softmax(Q -

KTV

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n-d?) O(n) O(n)

Convolutional Ok -n-d?*) o(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)




Transformer

Paper [1] Outpur

Probabilities

Vaswani, Ashish, et al.
“Attention is all you need.", NeuriPS 2017
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Multi-Head Attention

Scaled Dot-Product Attention
QK"

Jax

e Dot products grow large in magnitude, pushing the softmax function

into regions
where it has extremely :  attention

small gradients

e scaled by \/ dj,

Attention(Q,K,V) = softmax( )\

Scaled Dot-Product h
Attention

S A | (1N

_.' [ I I

[ Linear ]J[ Linear ]J[ Linear',l
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Multi-Head Attention

Multi-Head Attention

MultiHead(Q,K, V)
= Concat(heady, head,,..., head,)W°

where head1 =
Attention(Q Wl-Q, Kw,vw/)

e Create different attention heads by linearly projecting
Q, K, and V h-times to dj,, dj and d,, dimensions.

e different heads capture different groups of global
dependencies

e dy =dy, = dpoger/h = 64

Linear

Concat

it

Scaled Dot-Product

Aftention
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Positional Encoding

Motivation

e Need to inject information about the positions of the

tokens in the sequence

Qutput
Probabilities

Add & Norm

FomUIa Feed
pos Forward
° PE(pOS, 2l) = Sin( ) I_I=|l
100000(2i/d Add 8 Norm J
/Amodel) e i) Multi-Head
- Feed ’ Attention \
. pos orwar T 7 %
e PE(pos,2i+ 1) = cos( _ ) |
100000(2i/dmodel) A3 & Norm
. . Al e WREEAE Vasked
® [ is the index of dimension irHeeo Nt Heaol
ention ttention
® POS is the position of the symbol =l N s =]
Pasitional D Paositional
Encoding & Encoding
Input Output
Embedding Embedding
Inputs Outputs

{shifted right)



Experiment and Result

Sequence to sequence learning
e Machine Translation
e Data: WMT 2014 English-German, English-French

Result
e Metric: BLEU
BLEU Training Cost (FLOPs)
Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10"  1.4-10%
ConvS2S [9] 25.16  40.46 9.6-10% 1.5-10%
MoE [32] 26.03  40.56 2.0-10"¥  1.2.10%
Deep-Att + PosUnk Ensemble [39] 404 8.0-10%Y
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%0  1.1-10*
ConvS2S Ensemble [9] 2636  41.29 7.7-101°  1.2-10%
Transformer (base model) 27.3 38.1 3.3.-10'8

Transformer (big) 28.4 41.8 2.3-10%




Experiment and Result

Visualisation

e 8 attention heads

more difficult

e Syntactic dependency: make ...
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Representation Learning

Word embedding

e word2vec / Glove

Contextual Representations

* Semi-Supervised Sequence Learning, 2015

* ELMo: Deep Contextual Word Embeddings (Peters et al., 2018)
e pre-train Bi-LSTM and concat hidden weights as embedding

* GPT: Improving Language Understanding by Generative Pre-Training,
(Peters et al., 2018)

* pre-train Transformer on auto-regressive language modeling

OpenAl GPT




Masked Language Modeling

Auto-regressive

* Only train from one end to another end
* Can’t have context from both side for target

Paper [2]

e Devlin, Jacob, et al.

"Bert: Pre-training of deep bidirectional transformers
for language understanding.", NAACL 2019

Masked LM: Mask out k% of the input words, and
then predict the masked words (k=15)

store gallon

I !

the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: Too expensive to train
e Too much masking: Not enough context



Masked Language Modeling

Problem
* Mask token never seen at fine-tuning

Solution:
® 80% of the time, replace with [MASK]

went to the store - went to the [MASK]
® 10% of the time, replace random word

went to the store - went to the running
® 10% of the time, keep same

went to the store - went to the store



Next Sentence Prediction

Additional objective function
To learn relationships between sentences, predict
whether Sentence B is actual sentence that
proceeds Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

Embeddings

[MASK] [MASK]

Input [ [cLs) ] [ my ] [dog ] [ is Ucute ][ [SEP] ] [ he ” likes ][ play ][ ##ing ” [SEP] ]

Token

Embeddings E|i23LS| Emv EI'\"ls"l EIS Ecute E[S»EF’] Ehe EIMASKI Eplay E"mg E[SEI‘-‘]
+ + + + + + + + + + +

Sentence

Embedding E, || Eo || Eo || Ea || Eo || Ea || BEs || Es || Eg = Eg
+ + + + + + + + + + +

Transformer

Positional

E::ﬁ;(;gl;?ng EO E1 E2 E3 E4 E5 Eﬁ E7 EB E9 E10




Multimodal Fusion - Input Concatenation

«  Self-attention
* modality-unaware

. - . .
Prevent from Attending
L ol Image Embedder UNITER Model Text Embedder
Image rulurc T natorss Text F:samve
Myl | be, By (htgn| b Mg | B o Mg | M M sidirectional
d=b Rt B e PR | Token || Pasition |
i..ﬂ man with his dog on a couch ——H:
SeqtoSeq } i
last % 2 ™ Yoo A Vi) ¥ Fimage ¥ Visroe
o
s menl ez RoIN |Esm Toki  [MASK] Tok3 e [MASK)  TokT  [sTOP) UN'TER UN"ER . UNITER .
man with his [MASK]* man with his dog man with his dog [CLS]
¥ Word Region Allgnment (WRA)
Image Masked Sentence Seif-attention mask Masked Language Modeling (MLM)  Masked Region Modeling (MRM)

Image-Text Matchmg (IT™)

Figure 2: Model architecture for pre-training. The input comprises of image input, sentence input, and three special tokens

([CLS], [SEP). [STOPY]). The image is processed as N Region of Interests (Rols) and region features are extracted according Fig. 1: Overview of the proposed UNITER model (best viewed in color), consisting of
to Eq. I. The sentence is tokenized and masked with [MASK] tokens for the later masked language modeling task. Our Unified an Image Embedder, a Text Embedder and a multi-layer Transformer, learned through

Encoder-Decoder consists of 12 layers of Transformer blocks, each having a masked self-attention layer and feed-forward
module, where the self-attention mask controls what input context the prediction conditions on. We implemented two self-
attention masks depending on whether the objective is bidirectional or seq2seq. Better viewed in color.

four pre-training tasks



Multimodal Fusion - Cross-attention

+ self-attention
* modality-aware
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Figure 1: The LXMERT model for learning vision-and-language cross-modality representations.

Cross-Maodality Encoder

Vision
Qutput
Cross-
& Modality
Qutput

] Language
H Output

‘Self” and

‘Cross’ are abbreviations for self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes

a feed-forward sub-layer.
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image input
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Figure 1: ustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder.
We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before
fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a
masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to
improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average
version of the base model) as additional supervision during training.



Seq2seq Pre-training - Image

Wang, Z., Yu, J, Yu, AW, Dai, Z., Tsvetkoy, Y. and Cao, Y., SimVLM: Simple Visual Language

Model Pretraining with Weak Supervision. In /nternational Conference on Learning
Representations.

Singh, A., Hu, R, Goswami, V., Couairon, G., Galuba, W., Rohrbach, M. and Kiela, D., 2022. Flava:
A foundational language and vision alignment model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 15638-15650).

Transformer Encoder —

|#]f# positional embedding

[)[5]  patehrtext embedding


https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
https://openaccess.thecvf.com/content/CVPR2022/html/Singh_FLAVA_A_Foundational_Language_and_Vision_Alignment_Model_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Singh_FLAVA_A_Foundational_Language_and_Vision_Alignment_Model_CVPR_2022_paper.html

Pre-training - Video

Zellers, R, Lu, J,, Lu, X, Yu, Y., Zhao, Y., Salehi, M., Kusupati, A., Hessel, J., Farhadi, A. and Choi,
Y., 2022. Merlot reserve: Neural script knowledge through vision and language and sound.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.

16375-16387).

Zellers, R., Lu, X., Hessel, J., Yu, Y., Park, J.S., Cao, J.,, Farhadi, A. and Choi, Y., 2021. Merlot:
Multimodal neural script knowledge models. Advances in Neural Information Processing

Systems, 34, pp.23634-23651.
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http://openaccess.thecvf.com/content/CVPR2022/html/Zellers_MERLOT_Reserve_Neural_Script_Knowledge_Through_Vision_and_Language_and_CVPR_2022_paper.html
https://proceedings.neurips.cc/paper/2021/hash/c6d4eb15f1e84a36eff58eca3627c82e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c6d4eb15f1e84a36eff58eca3627c82e-Abstract.html

Contrastive




Contrastive Pre-training - Image

Radford, A., Kim, JW., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A,
Mishkin, P, Clark, J. and Krueger, G., 2021, July. Learning transferable visual models from

natural language supervision. In International conference on machine learning (pp. 8748-
8763). PMLR.

(1) Contrastive pre-iraining (2) Create dataset classifier from label text
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http://proceedings.mlr.press/v139/radford21a
http://proceedings.mlr.press/v139/radford21a

Contrastive Pre-training - Image

Li, J., Li, D., Xiong, C. and Hoi, S., 2022, June. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In /nternational Conference on
Machine Learning (pp. 12888-12900). PMLR.
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https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html

Parameter Efficiency - Prompting

Prompting
Prompt Tuning
Prefix-Tuning




Parameter Efficiency - Prompting

Yang, Z., Gan, Z.,, Wang, J., Hu, X,, Lu, Y,, Liu, Z. and Wang, L., 2022, June. An empirical study of
gpt-3 for few-shot knowledge-based vqa. In Proceedings of the AAAl Conference on Artificial
Intelligence (Vol. 36, No. 3, pp. 3081-3089).

Zeng, A., Wong, A., Welker, S., Choromanski, K., Tombari, F., Purohit, A., Ryoo, M., Sindhwani, V.,
Lee, J., Vanhoucke, V. and Florence, P, 2022. Socratic Models: Composing Zero-Shot
Multimodal Reasoning with Language. ICLR 2023. arXiv e-prints, pp.arXiv-2204.

(a) Previous: separate knowledge retrieval and reasoning

- = Explicit external
P/ conceptnet Lt el knowledge
N — = Supenvised training
. WIKIPEDIA )
Step 1: external knowledge retrigval  more oo fuestion: Whal & the warmest)
Supervised training outdoor temperature this kind

. of weather can happen?
Knowledge Question Image -

Step 2: knowledge-image-question reasoning Lrﬂnage

g

(b)PICa: joint knowledge retrieval and reasoning
by prompting GPT-3

Image textual descriptions.

Caption: People are standing ... as it snows. <— Image-to-Text -J
Tag list: Umbrella, covered, ..., snow, wheel

» Implicit knowledge
["N-shot VQA || Quest | Textual |Frozen in GPT-3
__examples eIl descriptions | GPT-3 » Few-shotwio

Prompting GPT-3 with textual descriptions for V@A parameter update


https://ojs.aaai.org/index.php/AAAI/article/download/20215/19974
https://ojs.aaai.org/index.php/AAAI/article/download/20215/19974
https://openreview.net/forum?id=G2Q2Mh3avow
https://openreview.net/forum?id=G2Q2Mh3avow

Parameter Efficiency - Prompt Tuning

Tsimpoukelli, M., Menick, J.L,, Cabi, S., Eslami, S.M., Vinyals, O. and Hill, F, 2021. Multimodal
few-shot learning with frozen language models. Advances in Neural Information Processing
Systems, 34, pp.200-212.

Yu, Y., Chung, J., Yun, H,, Kim, J. and Kim, G., 2021. Transitional adaptation of pretrained models
for visual storytelling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 12658-12668).
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https://proceedings.neurips.cc/paper/2021/hash/01b7575c38dac42f3cfb7d500438b875-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01b7575c38dac42f3cfb7d500438b875-Abstract.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yu_Transitional_Adaptation_of_Pretrained_Models_for_Visual_Storytelling_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yu_Transitional_Adaptation_of_Pretrained_Models_for_Visual_Storytelling_CVPR_2021_paper.html

Parameter Efficiency - Prefix-Tuning

Zhang, Z., Guo, W., Meng, X., Wang, Y., Wang, Y., Jiang, X., Liu, Q and Yang, Z., 2022. Hyperpelt:
Unified parameter-efficient language model tuning for both language and vision-and-
language tasks. arXiv preprint arXiv:2203.03878.

Jia, M., Tang, L., Chen, B.C,, Cardie, C., Belongie, S., Hariharan, B. and Lim, S.N., 2022, October.
Visual Prompt Tuning. In Computer Vision-ECCV 2022: 17th European Conference, Tel Aviy,
Israel, October 23-27, 2022, Proceedings, Part XXX/l (pp. 709-727).

T Encoder Hyper-Embedding Computing
N
Nx Layer norm =;
£l
,-----L-----\'\' CIITT1] CIITT11] (O]
{Adapter ; Adapter OO || (O
T CIITTTT] CO) (CCEE
: FFN \
| —— Layer Block Task
@ . Embedding  Embedding Embedding
N
’(‘) \ W domn Biowrt MLP (] ) Mapping
\ Layer
Multi-head Attention AN y Sasise ] Sesnms!
CLIP
 — I I I I I
o] Blx] [B]7] r, D | - OO | Image
— PITTT1] " i Layer Block Visual
y, ) i Embedding  Embedding Embedding

Prefix

O For task embedding E \; For visual embedding Updated layer Frozen layer


https://arxiv.org/abs/2203.03878
https://arxiv.org/abs/2203.03878
https://arxiv.org/abs/2203.03878
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930696.pdf

Parameter Efficiency - Adapters

Sung, Y.L, Cho, J. and Bansal, M., 2022. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 5227-5237).

Sung, Y.L, Cho, J. and Bansal, M., 2022. LST: Ladder Side-Tuning for Parameter and Memory
Efficient Transfer Learning. In Advances in Neural Information Processing Systems 2022.
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https://openaccess.thecvf.com/content/CVPR2022/html/Sung_VL-Adapter_Parameter-Efficient_Transfer_Learning_for_Vision-and-Language_Tasks_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Sung_VL-Adapter_Parameter-Efficient_Transfer_Learning_for_Vision-and-Language_Tasks_CVPR_2022_paper.html
https://openreview.net/forum?id=isPnnaTZaP5
https://openreview.net/forum?id=isPnnaTZaP5

Generative Model - Text-to-Image

Rombach, R., Blattmann, A., Lorenz, D., Esser, P. and Ommer, B., 2022. High-resolution image

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 10684-10695).
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https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html

Generative Model - GPT

OpenAl, 2023. GPT-4. Available at: https://openai.com/research/gpt-4.
March 14, 2023.

(Optional) OpenAl (2023). GPT-4 Technical Report. ArXiv, abs/2303.08774.
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https://openai.com/research/gpt-4
https://arxiv.org/abs/2303.08774

Generative Model - GPT

Wuy, C,, Yin, S., Qi, W., Wang, X., Tang, Z. and Duan, N., 2023. Visual chatgpt: Talking, drawing
and editing with visual foundation models. arXiv preprint arXiv:2303.04671.
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Multitask Learning

Cho, J, Lei, J., Tan, H. & Bansal, M.. (2021). Unifying Vision-and-Language Tasks via Text
Generation. Proceedings of the 38th International Conference on Machine Learning, in
Proceedings of Machine Learning Research 139:1931-1942

Hu, R. and Singh, A., 2021. Unit: Multimodal multitask learning with a unified transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1439-1449).
Wang, P, Yang, A., Men, R, Lin, J,, Bai, S., Li, Z,, Ma, J., Zhou, C., Zhou, J. and Yang, H., 2022,
June. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-

sequence learning framework. In /nternational Conference on Machine Learning (pp. 23318-

23340). PMLR.
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https://proceedings.mlr.press/v139/cho21a.html
https://proceedings.mlr.press/v139/cho21a.html
https://openaccess.thecvf.com/content/ICCV2021/html/Hu_UniT_Multimodal_Multitask_Learning_With_a_Unified_Transformer_ICCV_2021_paper.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html

Reinforcement Learning

Lots of annotated Human judgements
data of response quality
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Reinforcement Learning

Wang, X., Chen, W,, Wang, Y.F. and Wang, W.Y,, 2018,
July. No Metrics Are Perfect: Adversarial Reward
Learning for Visual Storytelling. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long

Papers) (pp. 899-909).

Hu, J, Cheng, Y., Gan, Z,, Liu, J., Gao, J. and Neubig,
G., 2020, April. What makes a good story? designing
composite rewards for visual storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 34, No. 05, pp. 7969-7976).
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https://aclanthology.org/P18-1083/
https://aclanthology.org/P18-1083/
https://ojs.aaai.org/index.php/AAAI/article/view/6305
https://ojs.aaai.org/index.php/AAAI/article/view/6305
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Peer review

Helpful feedback for the presenters

Single-blind review

Don’ t worry. Your grades will not be affected by others’ review on you.
(On the contrary, the reviews will be graded.)



Repeat:
Practical arrangement

For presenter:

- Make an appointment with me and show me your slides by the Wednesday before your talk.
- Build a demo with Google Colab

For everyone else except the presenter:

- Read the paper to be presented, and post questions on MS Teams by Friday before the talk.

- Submit peer review of the presentation by Friday after the talk.
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